
H
High Performance Computing

Intro to Linux

• Linux, Shell, Bash Introduction

• CLI vs GUI

• File & Directory Management

• File Operations & Viewing

• File Compression & Storage Management

• User Information and History

• File Transfers & Synchronization

• Permissions & Ownership

• Process Management

• Environment Variables

• Scripting Basics

Table of Contents

What is Linux?
• Linux is an open-source operating system kernel that powers servers, desktops, mobile devices, and

embedded systems.

• Built on Unix principles, it is secure, stable, and highly customizable.

• Originally created by Linus Torvalds in 1991, Linux has grown into the core of many operating systems.

• Used in various distributions. Ubuntu is popular for desktops, Fedora for developers, and Rocky Linux is a

community-driven enterprise-grade distribution.

• Our NJIT’s HPC Wulver is running on Red Hat Enterprise Linux Version 8

• Supports multitasking and multi-user environments.

• Powers a vast majority of web servers, supercomputers, and Android devices.

• Linux is free and open-source, with strong community support and contributions.

What is Shell? Bash?
• Shell is a program that acts as an interface between the user and the operating system. It allows you to

communicate with the system by entering commands.

• Think of it like a pharmacist:—you request medicine, and they retrieve it for you. You can't access the storage

directly, but you can provide a prescription (commands) to get what you need.

• The shell is like a command interpreter: it interprets the commands you type and executes them to perform

tasks like navigating files, running programs, and much more.

• Bash (Bourne Again Shell) is one of the most widely used Linux shells. It interprets and executes commands

typed by users.

– Bash is both a command-line interface (CLI) and a scripting language that allows you to automate tasks.

Types of Shell
Types of Shell sh csh tcsh ksh bash zsh

Programming
Language

Yes Yes Yes Yes Yes Yes

Shell Variables Yes Yes Yes Yes Yes Yes

Command alias
No Yes Yes Yes Yes Yes

Command history No Yes Yes Yes Yes Yes

Filename completion No Yes Yes Yes Yes Yes

Command line editing No No Yes Yes Yes Yes

Job control No Yes Yes Yes Yes Yes

CLI vs GUI
• GUI (Graphical User Interface): Interact by clicking or touching the screen. User-friendly, great for

smartphones and desktops.

• CLI (Command Line Interface): Interact by typing commands. Preferred in servers, HPC environments (like NJIT

HPC), and for automation.

• Why is CLI Preferred in HPC?

– We use smartphones daily, clicking on apps, which internally translates into commands that execute

actions. The CLI skips this graphical interpretation process, making it faster.

– Automation: In GUI, copying 1000 files from 20 directories manually is tedious. Using CLI, you can write

a script to automate this task, saving you time and effort.

File & Directory Management

• File & Directory Management is about organizing,

navigating, and manipulating files and directories in a

Linux system.

• Understanding this is crucial because files are the core

of how Linux stores and interacts with data.

• Linux file system is hierarchical, starting from the root

directory (/).

• Directories organize files into structures, and files

contain data (text, programs, etc.).

• ls – Lists files and directories.

$ ls Documents

– List with details: Shows additional details like permissions, owner, size, etc.

$ ls -l

• cd – Changes the current directory.

$ cd Documents

– Navigate up one level: Moves up to the parent directory

$ cd ..

• pwd – Displays the present working directory.

$ pwd

File & Directory Management

• mkdir – Creates a new directory.

– Make sure you don’t add space in your folder name.

$ mkdir NewFolder

• rmdir – Removes an empty directory

$ rmdir OldFolder

• rm – Deletes files or directories. To remove a directory that is not empty, you need to use the -r flag with the

rm command.

$ rm -r Documents

File & Directory Management

• A file operation involves performing tasks like viewing, editing, or searching the content of files on your

system. These operations help you manage and interact with files.

• Viewing Files : You can open and view the content of files. This is helpful when you want to see what’s inside a

document, log file, or text file.

• Editing Files : Editing involves making changes to the content of a file. You might want to update information

or fix something in a document.

• Searching Within Files : Searching allows you to find specific words or phrases within files, so you don't have

to scroll through everything manually.

File Operations & Viewing

• cat – Displays the content of a file

$ cat file.txt

– For example: If you wanna see output of your job on Wulver

$ cat fileName.out

• grep – Search for specific text within files

$ grep "search_term" file.txt

– Search recursively in all files within a directory

$ grep -r "search_term" /path/to/directory

• less – View content of large files with more control (scrolling).

– Use the up and down arrows to scroll, type q to quit.

$ less file.txt

File Operations & Viewing

• HPC users deal with large datasets, logs, and results, which can quickly consume disk space and quota limits.

• Compressing files reduces storage usage and speeds up file transfers.

• Some applications on HPC require files in compressed formats to save memory.

• Best Practices for HPC users:

– Regularly compress large files to free up space.

– Use scratch storage for temporary files instead of home directories and then transfer these files to your

home or project directory because scratch is deleted after 30 days.

– Delete unnecessary files and check disk usage with du -sh *.

File Compression & Storage management

• Checking Disk Usage

– du -sh * : Shows the space usage of each file and folder in the current directory.

$ du -sh *

– quota_info : Shows the used storage of home, project, scratch. Also displays Service Units.

$ quota_info

– homespace : Shows the used storage of the home directory with a detailed breakdown of file storage for each

subdirectory

$ homespace

• Compressing files

– To save storage space on HPC, compress your files using efficient algorithms. Compression reduces file size while

maintaining data integrity.

$ xz myfile.txt

$ bzip2 myfile.txt

$ gzip myfile.txt

File Compression & Storage management

File Compression & Storage management
• To uncompress the files, use xz -d command

$ xz -d myfile.txt.xz

• Compressing directories

– Creates a compressed archive of the myfolder/.

$ tar -czf myfolder.tar.gz myfolder/

• Extracting Compressed Files

$ tar -xzf myfolder.tar.gz

• whoami – Displays the current logged-in user

$ whoami

• man – Displays the manual for a command

$ man ls

• history – Shows previously used commands

$ history

• id – Displays user ID (UID) and group ID (GID)

– For example : You use this command to check your group and pi’s ucid on Wulver

$ id

• groups – Lists the groups a user belongs to

$ groups

User Information and History

• exit – Closes the terminal session

$ exit

• clear – Clears the terminal screen

$ clear

• alias – Creates shortcuts for commands.

– For example : Create a shortcut to clear the terminal screen (instead of typing clear every time):

$ alias cls = "clear"

User Information and History

• When working on NJIT HPC, you often need to move files between your local computer and the cluster for

processing.

• Common use cases include uploading datasets, scripts, software, and configurations, and downloading results

or logs from your HPC jobs.

• Large File Sizes: Research datasets and simulation outputs can be massive, making efficient transfer methods

essential.

• Network Limitations: Transferring files over SSH ensures security but can be slower over poor network

connections.

• Key transfer methods include scp (Secure Copy Protocol), rsync (Remote Synchronization), sftp (Secure FTP),

wget & curl

File Transfers & Synchronization

• scp – Securely copy files between your computer and NJIT HPC

– Upload a file to HPC: $ scp my_script.py ucid@wulver.njit.edu:/home/ucid/

– Download a file from HPC: $ scp ucid@wulver.njit.edu:/home/ucid/output.txt /path/to/local

• rsync – Efficient synchronization between local and HPC

– Upload files while preserving timestamps and compressing data:

$ rsync -avz my_data ucid@hpc.njit.edu:/home/ucid/

– Download a file from HPC:

$ rsync -avz ucid@hpc.njit.edu:/home/ucid/results/ ./results/

• wget – Download files from external sources to HPC

$ wget https://example.com/dataset.csv

File Transfers & Synchronization

• cp – Copies files and directories.

$ cp file.txt Documents/Backup

• mv – Moves or renames files.

$ mv file.txt Documents/Archive
moves files

$ mv file.txt new_name.txt
rename file

File Transfers & Synchronization

Permissions & Ownership
• Linux was built to be secure and have permission functionality. Permissions determine who can read, write, or

execute a file.

• Suppose there are multiple users on a machine, and only some users should be allowed to access a certain

directory or file. In such cases, permissions are applied.

• Linux machines can have multiple users, and they can be grouped together. The system also has one

administrator (root), who has the power to do anything.

• Files have a specific format for permissions:

– r → Read

– w → Write

– x → Execute

Permissions & Ownership
• Permissions are grouped into three sets of three:

– Owner of the file
– Group associated with the file

– Others (everyone else)

• For example, rwx --w --r means:
– rwx → The owner can read, write, and execute the file.
– --w → The group can write, but not read or execute.

– --r → Others can only read the file.

• Permissions are also represented as numbers:
– Read → 4
– Write → 2
– Execute → 1

• For example, rwx --w --r is represented as 724
• The d at the beginning indicates a directory (e.g., drwx---r--).

• ls -l : Displays the detailed permissions for files and directories.

$ ls -l myfolder

drwxrwx--- 2 user1 group1 4096 Feb 21 12:00 myfolder

• chmod : Changes the permissions of a file or directory.

$ chmod 700 myfolder

Now, only the owner (user1) can access the folder.

• chmod : Changes the permissions recursively of a directory.

$ chmod -R 700 myfolder
Now, only the owner (user1) can access the folder.

$ chmod u=rwx,g=rx,o= myfolder
Now, only the owner (user1) can access the folder.

Permissions & Ownership

• chown : Changes the owner and group of a file.

$ chown user2:group2 myfolder

Changes ownership to user2 and group2.

• chgrp : Changes the group associated with a file or directory.

$ chgrp group2 myfolder

Changes the group to group2.

Permissions & Ownership

Process Management
• In Linux, a process is simply a program that is running. Process management refers to how the system handles

these programs, ensuring they run efficiently and without conflicts.

• Processes in Linux are assigned a unique PID (Process ID), and they can run in the foreground or background:

– Foreground processes run in the terminal and block other tasks until they finish.

– Background processes run independently, allowing you to do other work in the terminal.

• You can control processes using commands to check their status, kill unwanted processes, or even prioritize

them.

• ps : Displays a list of running processes in the current terminal session.

$ ps
PID TTY TIME CMD
1234 pts/0 00:00:01 bash

2345 pts/0 00:00:00 ps

• ps aux : Lists all processes running on the system, including those from other users.

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
user1 1234 0.1 1.5 25000 1024 pts/0 Ss+ 08:00 0:01 bash

user1 2345 0.0 0.1 4567 600 pts/0 R+ 08:01 0:00 ps aux

• kill PID: Kills the process with the specified PID.

$ kill 1234

kills the process with id 1234

$ kill -9 1234

Forcefully kills a process if the normal kill doesn’t work.

Process Management

• Think of environment variables as sticky notes that the system uses to remember important settings.

• They store information like your username, system paths, and configuration details that programs need to run

properly.

• In HPC, environment variables help manage software, compilers, and job scheduling settings.

• They allow users to customize their system without modifying core files.

• Use printenv or env command to see all the environment variables:

$printenv
….
HOME=/home/user1
PATH=/bin:/usr/bin:/usr/local/bin:/usr/local/sbin
SHELL=/bin/bash
….

Environment Variables

• You can also check an environment variable by using echo.
$ echo $PATH

This shows all directories where the system looks for commands.

• Setting a Temporary Environment Variable:

– You can create a new variable for the current session. This will set MY_VARIABLE but will disappear

when you close the terminal.

$ export MY_VARIABLE="Hello, NJIT HPC!"

• Making a Variable Permanent:

– To keep a variable across sessions, add it to ~/.bashrc or ~/.bash_profile
$ echo 'export MY_VARIABLE="Hello, NJIT HPC!"' >> ~/.bashrc

$ source ~/.bashrc

– Now, the variable is available every time you log in!

Environment Variables

• $USER: Contains the username of the current user.

• $HOME: Refers to the home directory of the current user.

• $PATH: A colon-separated list of directories that the shell searches through to find executable files.

• $SHELL: Indicates the path to the current shell being used. (It’s /bin/bash on Wulver)

• $PWD: Stands for "Print Working Directory" and gives the current directory the shell is operating in.

• $LOGNAME: The login name of the user. (Display’s UCID on Wulver)

Common Environment Variables

• A shell script is like a to-do list for your computer. Instead of typing commands one by one, you write them in

a file, and the system runs them automatically.

• In NJIT HPC, shell scripts are often used to automate tasks, run programs, or submit jobs to a computing

cluster.

• Saves time and reduces manual intervention.

• Shell scripts are written as plain text files that contain a series of commands to be executed by the shell.

• Key Components:

– Variables: Store values for use later in the script.

– Loops: Repeat tasks until a condition is met.

– Conditionals: Execute commands based on conditions.

Scripting Basics

• Let’s learn this by taking an example of Automating File Copying

• Why Automate?

– Time Saver: Instead of copying files one by one, a script does it all at once.

– Consistency: Reduces the chance of human error—every file gets copied reliably.

– Efficiency: In Machine Learning workflows, large datasets are common; automating file transfers

ensures data is always in the right place.

• Create the script file using nano editor because its included in all linux versions by default. You can choose

other editors as well like emacs or vim. This will open an editor where you can write your script.

$ nano copy_files.sh

• First line tells shell to use the Bash program to run the script, ensuring the commands are interpreted

correctly.

Example Script

Example Script
• Write the script:

#!/bin/bash

Define source and destination folders
SOURCE_DIR="/home/user1/raw_data"
DEST_DIR="/home/user1/processed_data"

Create destination folder if it doesn’t exist
mkdir -p "$DEST_DIR"

Copy all CSV files from source to destination
cp "$SOURCE_DIR"/*.csv "$DEST_DIR"

echo "All CSV files have been copied from $SOURCE_DIR to $DEST_DIR"

Example Script
• Make the script executable:

$ chmod +x copy_files.sh

• Finally run the script:

$./copy_files.sh

• Researchers at NJIT HPC often need to move or backup data between folders. Automating this task means

more time for actual research and less on repetitive manual work.

• We can further automate many tasks by using advanced scripting, and schedule them with cron to run

automatically at regular intervals, eliminating the need for manual intervention.

Thank You

Any Questions?

Our website: https://hpc.njit.edu/

Our email: hpc@njit.edu

https://hpc.njit.edu/
mailto:hpc@njit.edu

	Slide 1
	Slide 2: Intro to Linux
	Slide 3: Table of Contents
	Slide 4: What is Linux?
	Slide 5: What is Shell? Bash?
	Slide 6: Types of Shell
	Slide 7: CLI vs GUI
	Slide 8: File & Directory Management
	Slide 9: File & Directory Management
	Slide 10: File & Directory Management
	Slide 11: File Operations & Viewing
	Slide 12: File Operations & Viewing
	Slide 13: File Compression & Storage management
	Slide 14: File Compression & Storage management
	Slide 15: File Compression & Storage management
	Slide 16: User Information and History
	Slide 17: User Information and History
	Slide 18: File Transfers & Synchronization
	Slide 19: File Transfers & Synchronization
	Slide 20: File Transfers & Synchronization
	Slide 21: Permissions & Ownership
	Slide 22: Permissions & Ownership
	Slide 23: Permissions & Ownership
	Slide 24: Permissions & Ownership
	Slide 25: Process Management
	Slide 26: Process Management
	Slide 27: Environment Variables
	Slide 28: Environment Variables
	Slide 29: Common Environment Variables
	Slide 30: Scripting Basics
	Slide 31: Example Script
	Slide 32: Example Script
	Slide 33: Example Script
	Slide 34: Thank You Any Questions?

